Rotation estimation of high precision from an RGB-D object observation is a huge challenge in 6D object pose estimation, due to the difficulty of learning in the non-linear space of SO(3). In this paper, we propose a novel rotation estimation network, termed as VI-Net, to make the task easier by decoupling the rotation as the combination of a viewpoint rotation and an in-plane rotation. More specifically, VI-Net bases the feature learning on the sphere with two individual branches for the estimates of two factorized rotations, where a V-Branch is employed to learn the viewpoint rotation via binary classification on the spherical signals, while another I-Branch is used to estimate the in-plane rotation by transforming the signals to view from the zenith direction. To process the spherical signals, a Spherical Feature Pyramid Network is constructed based on a novel design of SPAtial Spherical Convolution (SPA-SConv), which settles the boundary problem of spherical signals via feature padding and realizes viewpoint-equivariant feature extraction by symmetric convolutional operations. We apply the proposed VI-Net to the challenging task of categorylevel 6D object pose estimation for predicting the poses of unknown objects without available CAD models; experiments on the benchmarking datasets confirm the efficacy of our method, which outperforms the existing ones with a large margin in the regime of high precision.

阅读全文 »

类别级6D对象姿态估计旨在估计特定类别中看不见的实例的旋转、平移和大小。在这一领域,基于密集对应的方法取得了领先的性能。但是,它们没有明确考虑不同实例的局部和全局几何信息,导致对具有显著形状变化的不可见实例的泛化能力较差。针对这个问题,我们提出了一种新的用于类别级6D物体姿态估计(AG-Pose)的实例自适应和几何感知关键点学习方法,该方法包括两个关键设计:(1)第一个设计是实例自适应关键点检测模块,它可以自适应地检测各种实例的一组稀疏关键点来表示它们的几何结构。(2)第二种设计是GeometricAware Feature Aggregation模块,可以高效地将局部和全局几何信息集成到关键点特征中。这两个模块可以协同工作,为看不见的实例建立健壮的关键点级对应关系,从而增强模型的泛化能力。在CAMERA25和REAL275数据集上的实验结果表明,所提出的AG-Pose在没有特定类别形状先验的情况下,其性能大大优于最先进的方法。代码将于https://github.com/Leeiieeo/AG-Pose发布。

阅读全文 »
0%