安装AG-Pose环境
创建环境:
1
| conda create --name agpose python=3.9
|
激活环境:
安装PyTorch:
1
| pip3 install torch==1.12 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu113
|
安装其他依赖:
1 2 3 4 5 6
| pip3 install gorilla-core==0.2.5.3 pip3 install opencv-python
git clone https://github.com/Leeiieeo/AG-Pose.git cd AG-Pose/model/pointnet2 python setup.py install
|
Clone mentian/object-deformnet并安装nn_distance
,需要使用该仓库中的代码进行数据处理:
1 2 3
| git clone https://github.com/mentian/object-deformnet.git cd object-deformnet/lib/nn_distance python setup.py install
|
数据集下载
下载NOCS数据集到数据集文件夹中:
- http://download.cs.stanford.edu/orion/nocs/camera_composed_depth.zip
- http://download.cs.stanford.edu/orion/nocs/camera_train.zip
- http://download.cs.stanford.edu/orion/nocs/camera_val25K.zip
- http://download.cs.stanford.edu/orion/nocs/gts.zip
- http://download.cs.stanford.edu/orion/nocs/obj_models.zip
- http://download.cs.stanford.edu/orion/nocs/real_test.zip
- http://download.cs.stanford.edu/orion/nocs/real_train.zip
下载JiehongLin/Self-DPDN的分割结果到仓库文件夹中:
- https://drive.google.com/file/d/1hNmNRr7YRCgg-c_qdvaIzKEd2g4Kac3w/
下载使用mentian/object-deformnet进行数据预处理时用到的数据到仓库文件夹中:
- https://drive.google.com/file/d/1p72NdY4Bie_sra9U8zoUNI4fTrQZdbnc/
下载运行AG-Pose时使用到的分割结果:
- http://home.ustc.edu.cn/~llinxiao/segmentation_results.zip
下载NOCS数据集中缺失的物体模型(From: https://github.com/mentian/object-deformnet/issues/3#issuecomment-698858332)到数据集文件夹中:
- https://drive.google.com/file/d/1rWkxEVJJh_kWIqxudn_i6sJ-hhd0E7TV/
数据集处理
JiehongLin/Self-DPDN
遵循JiehongLin/Self-DPDN的处理方式,首先解压上述文件,并组织如下,注意,data文件夹位于Self-DPDN文件夹下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
| data ├── camera -> /data1/dataset/nocs/tanmx/dpdn/camera │ ├── train │ └── val ├── camera_full_depths -> /data1/dataset/nocs/tanmx/dpdn/camera_full_depths/ │ ├── train │ └── val ├── gts -> /data1/dataset/nocs/tanmx/dpdn/gts/ │ ├── real_test │ └── val ├── mean_shapes.npy ├── obj_models -> /data1/dataset/nocs/tanmx/dpdn/obj_models/ │ ├── real_test │ ├── real_train │ ├── train │ └── val ├── real -> /data1/dataset/nocs/tanmx/dpdn/real/ │ ├── test │ └── train └── segmentation_results -> /data1/dataset/nocs/tanmx/dpdn/segmentation_results/ ├── test_trainedwithMask ├── test_trainedwoMask └── train_trainedwoMask
21 directories, 1 file
|
进入obj_models/val/02876657/d3b53f56b4a7b3b3c9f016d57db96408
文件夹,其中内容为
1 2
| $ ls bbox.txt model.mtl model.obj
|
查看model.obj
文件:
1 2 3 4 5 6 7 8 9 10 11 12 13 14
| $ cat model.obj newmtl Material.57774a50243e5d429f3a4ea105ec3930 d 0.5 Tr 0.5 Kd 0.392157 0.584314 0.929412 newmtl Material.90b00bf69165eda831fe702671104217 Tr 0.0 Kd 0.6 0.117647 0.117647 newmtl Material.dc7a3ca9ca091ddbf48733c3a604f557 Tr 0.0 Kd 1.0 1.0 1.0 newmtl Material.b2cdaf4394d1a4f850458878b81c7fa1 Tr 0.0 Kd 0.8 0.6 0.0
|
解压https://drive.google.com/file/d/1rWkxEVJJh_kWIqxudn_i6sJ-hhd0E7TV/中的文件:
1 2 3 4 5
| $ unzip obj_models.zip $ ls 02876657 obj_models.zip $ ls 02876657/d3b53f56b4a7b3b3c9f016d57db96408/ bbox.txt info.txt model_bad.mtl model_bad.obj model.mtl model.obj
|
删除原文件夹obj_models/val/02876657/d3b53f56b4a7b3b3c9f016d57db96408
中的内容,将02876657/d3b53f56b4a7b3b3c9f016d57db96408
文件夹中的内容复制到该文件夹中:
1 2 3 4
| $ rm obj_models/val/02876657/d3b53f56b4a7b3b3c9f016d57db96408/* $ cp 02876657/d3b53f56b4a7b3b3c9f016d57db96408/* obj_models/val/02876657/d3b53f56b4a7b3b3c9f016d57db96408/ $ ls obj_models/val/02876657/d3b53f56b4a7b3b3c9f016d57db96408 bbox.txt info.txt model_bad.mtl model_bad.obj model.mtl model.obj
|
执行:
1
| python data_processing.py
|
执行后目录变为:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| data ├── camera -> /data1/dataset/nocs/tanmx/dpdn/camera │ ├── train │ ├── train_list_all.txt │ ├── train_list.txt │ ├── val │ └── val_list_all.txt ├── camera_full_depths -> /data1/dataset/nocs/tanmx/dpdn/camera_full_depths/ │ ├── train │ └── val ├── gts -> /data1/dataset/nocs/tanmx/dpdn/gts/ │ ├── real_test │ └── val ├── mean_shapes.npy ├── obj_models -> /data1/dataset/nocs/tanmx/dpdn/obj_models/ │ ├── real_test │ ├── real_train │ ├── train │ └── val ├── real -> /data1/dataset/nocs/tanmx/dpdn/real/ │ ├── test │ ├── test_list_all.txt │ ├── train │ ├── train_list_all.txt │ └── train_list.txt └── segmentation_results -> /data1/dataset/nocs/tanmx/dpdn/segmentation_results ├── test_trainedwithMask ├── test_trainedwoMask └── train_trainedwoMask
21 directories, 7 files
|
执行:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
| $ ls -l data/camera/ total 9712 drwxr-xr-x 27502 tanmx tanmx 577536 Jun 14 2019 train -rw-rw-r-- 1 tanmx tanmx 4675000 Apr 29 11:00 train_list_all.txt -rw-rw-r-- 1 tanmx tanmx 4235159 Apr 29 15:57 train_list.txt drwxr-xr-x 2502 tanmx tanmx 69632 Jun 14 2019 val -rw-rw-r-- 1 tanmx tanmx 375000 Apr 29 11:00 val_list_all.txt
$ ls -l -h data/real/ total 228 drwxrwxr-x 8 tanmx tanmx 4096 Nov 13 2018 test -rw-rw-r-- 1 tanmx tanmx 49572 Apr 29 11:00 test_list_all.txt drwxrwxr-x 9 tanmx tanmx 4096 Jun 14 2019 train -rw-rw-r-- 1 tanmx tanmx 82042 Apr 29 11:00 train_list_all.txt -rw-rw-r-- 1 tanmx tanmx 82042 Apr 29 16:09 train_list.txt
|
遵循mentian/object-deformnet的处理方式,首先解压上述文件,并组织如下,注意,data文件夹位于object-deformnet文件夹下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
| data ├── camera -> /data1/dataset/nocs/tanmx/spd/camera/ │ ├── train │ └── val ├── deformnet_eval -> /data1/dataset/nocs/tanmx/spd/deformnet_eval/ │ ├── camera │ ├── mrcnn_results │ ├── nocs_results │ └── real ├── gts -> /data1/dataset/nocs/tanmx/spd/gts/ │ ├── real_test │ └── val ├── obj_models -> /data1/dataset/nocs/tanmx/spd/obj_models/ │ ├── real_test │ ├── real_train │ ├── train │ └── val ├── pose_dataset.py ├── real -> /data1/dataset/nocs/tanmx/spd/real/ │ ├── test │ └── train └── shape_dataset.py
19 directories, 2 files
|
按顺序执行:
1 2 3
| cd preprocess python shape_data.py python pose_data.py
|
执行python shape_data.py
后目录变为:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| data ├── camera -> /data1/dataset/nocs/tanmx/spd/camera/ │ ├── train │ └── val ├── deformnet_eval -> /data1/dataset/nocs/tanmx/spd/deformnet_eval/ │ ├── camera │ ├── mrcnn_results │ ├── nocs_results │ └── real ├── gts -> /data1/dataset/nocs/tanmx/spd/gts/ │ ├── real_test │ └── val ├── obj_models -> /data1/dataset/nocs/tanmx/spd/obj_models/ │ ├── camera_train.pkl │ ├── camera_val.pkl │ ├── mug_meta.pkl │ ├── real_test │ ├── real_test.pkl │ ├── real_train │ ├── real_train.pkl │ ├── ShapeNetCore_2048.h5 │ ├── ShapeNetCore_4096.h5 │ ├── train │ └── val ├── pose_dataset.py ├── real -> /data1/dataset/nocs/tanmx/spd/real/ │ ├── test │ └── train └── shape_dataset.py
19 directories, 9 files
|
执行python pose_data.py
后目录变为:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
| data ├── camera -> /data1/dataset/nocs/tanmx/spd/camera │ ├── train │ ├── train_list_all.txt │ ├── train_list.txt │ ├── val │ ├── val_list_all.txt │ └── val_list.txt ├── deformnet_eval -> /data1/dataset/nocs/tanmx/spd/deformnet_eval │ ├── camera │ ├── mrcnn_results │ ├── nocs_results │ └── real ├── gts -> /data1/dataset/nocs/tanmx/spd/gts/ │ ├── real_test │ └── val ├── obj_models -> /data1/dataset/nocs/tanmx/spd/obj_models/ │ ├── camera_train.pkl │ ├── camera_val.pkl │ ├── mug_meta.pkl │ ├── real_test │ ├── real_test.pkl │ ├── real_train │ ├── real_train.pkl │ ├── ShapeNetCore_2048.h5 │ ├── ShapeNetCore_4096.h5 │ ├── train │ └── val ├── pose_dataset.py ├── real -> /data1/dataset/nocs/tanmx/spd/real/ │ ├── test │ ├── test_list_all.txt │ ├── test_list.txt │ ├── train │ ├── train_list_all.txt │ └── train_list.txt └── shape_dataset.py
19 directories, 17 files
|
执行:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| $ ls -l data/camera/ total 9996 drwxr-xr-x 27502 tanmx tanmx 577536 Jun 14 2019 train -rw-rw-r-- 1 tanmx tanmx 4675000 Apr 29 14:00 train_list_all.txt -rw-rw-r-- 1 tanmx tanmx 4235159 Apr 29 18:42 train_list.txt drwxr-xr-x 2502 tanmx tanmx 69632 Jun 14 2019 val -rw-rw-r-- 1 tanmx tanmx 375000 Apr 29 14:00 val_list_all.txt -rw-rw-r-- 1 tanmx tanmx 288300 Apr 29 19:15 val_list.txt
$ ls -l data/real/ total 280 drwxrwxr-x 8 tanmx tanmx 4096 Nov 13 2018 test -rw-rw-r-- 1 tanmx tanmx 49572 Apr 29 14:00 test_list_all.txt -rw-rw-r-- 1 tanmx tanmx 49572 Apr 29 19:21 test_list.txt drwxrwxr-x 9 tanmx tanmx 4096 Jun 14 2019 train -rw-rw-r-- 1 tanmx tanmx 82042 Apr 29 14:00 train_list_all.txt -rw-rw-r-- 1 tanmx tanmx 82042 Apr 29 18:53 train_list.txt
$ ls -l data/obj_models/ total 116060 -rw-rw-r-- 1 tanmx tanmx 26695895 Apr 29 11:32 camera_train.pkl -rw-rw-r-- 1 tanmx tanmx 4634293 Apr 29 11:36 camera_val.pkl -rw-rw-r-- 1 tanmx tanmx 23197 Apr 29 11:37 mug_meta.pkl drwxrwxr-x 2 tanmx tanmx 4096 Sep 27 2019 real_test -rw-rw-r-- 1 tanmx tanmx 443600 Apr 29 11:37 real_test.pkl drwxrwxr-x 2 tanmx tanmx 4096 Sep 27 2019 real_train -rw-rw-r-- 1 tanmx tanmx 443584 Apr 29 11:37 real_train.pkl -rw-rw-r-- 1 tanmx tanmx 28950893 Apr 29 12:21 ShapeNetCore_2048.h5 -rw-rw-r-- 1 tanmx tanmx 57618690 Apr 29 11:39 ShapeNetCore_4096.h5 drwxr-xr-x 12 tanmx tanmx 4096 Sep 27 2019 train drwxr-xr-x 12 tanmx tanmx 4096 Sep 27 2019 val
|
运行代码
需要JiehongLin/Self-DPDN处理后的数据集及其list和mentian/object-deformnet处理后的物体模型pkl,组织如下:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
| data ├── camera -> /data1/dataset/nocs/tanmx/agpose/camera │ ├── train │ ├── train_list_all.txt │ ├── train_list.txt │ ├── val │ └── val_list_all.txt ├── camera_full_depths -> /data1/dataset/nocs/tanmx/agpose/camera_full_depths/ │ ├── train │ └── val ├── gts -> /data1/dataset/nocs/tanmx/agpose/gts/ │ ├── real_test │ └── val ├── obj_models -> /data1/dataset/nocs/tanmx/agpose/obj_models/ │ ├── camera_train.pkl │ ├── real_test │ ├── real_train │ ├── real_train.pkl │ ├── train │ └── val ├── real -> /data1/dataset/nocs/tanmx/agpose/real/ │ ├── test │ ├── test_list_all.txt │ ├── train │ ├── train_list_all.txt │ └── train_list.txt └── segmentation_results -> /data1/dataset/nocs/tanmx/agpose/segmentation_results ├── CAMERA25 └── REAL275
20 directories, 8 files
|
之后按照仓库README中的命令运行代码即可。