Category-level object pose estimation, aiming to predict the 6D pose and 3D size of objects from known categories, typically struggles with large intra-class shape variation. Existing works utilizing mean shapes often fall short of capturing this variation. To address this issue, we present SecondPose, a novel approach integrating object-specific geometric features with semantic category priors from DINOv2. Leveraging the advantage of DINOv2 in providing SE(3)-consistent semantic features, we hierarchically extract two types of SE(3)-invariant geometric features to further encapsulate local-to-global object-specific information. These geometric features are then point-aligned with DINOv2 features to establish a consistent object representation under SE(3) transformations, facilitating the mapping from camera space to the pre-defined canonical space, thus further enhancing pose estimation. Extensive experiments on NOCS-REAL275 demonstrate that SecondPose achieves a 12.4% leap forward over the state-of-the-art. Moreover, on a more complex dataset HouseCat6D which provides photometrically challenging objects, SecondPose still surpasses other competitors by a large margin.

阅读全文 »

Estimating the 6D object pose from a single RGB image often involves noise and indeterminacy due to challenges such as occlusions and cluttered backgrounds. Meanwhile, diffusion models have shown appealing performance in generating high-quality images from random noise with high indeterminacy through step-by-step denoising. Inspired by their denoising capability, we propose a novel diffusion-based framework (6D-Diff) to handle the noise and indeterminacy in object pose estimation for better performance. In our framework, to establish accurate 2D-3D correspondence, we formulate 2D keypoints detection as a reverse diffusion (denoising) process. To facilitate such a denoising process, we design a Mixture-of-Cauchy-based forward diffusion process and condition the reverse process on the object appearance features. Extensive experiments on the LM-O and YCB-V datasets demonstrate the effectiveness of our framework.

阅读全文 »

We propose a single-shot approach to determining 6-DoF pose of an object with available 3D computer-aided design (CAD) model from a single RGB image. Our method, dubbed MRC-Net, comprises two stages. The first performs pose classification and renders the 3D object in the classified pose. The second stage performs regression to predict fine-grained residual pose within class. Connecting the two stages is a novel multi-scale residual correlation (MRC) layer that captures high-and-low level correspondences between the input image and rendering from first stage. MRC-Net employs a Siamese network with shared weights between both stages to learn embeddings for input and rendered images. To mitigate ambiguity when predicting discrete pose class labels on symmetric objects, we use soft probabilistic labels to define pose class in the first stage. We demonstrate state-of-the-art accuracy, outperforming all competing RGB-based methods on four challenging BOP benchmark datasets: T-LESS, LM-O, YCB-V, and ITODD. Our method is non-iterative and requires no complex post-processing.

阅读全文 »

Category-level 6D object pose estimation aims to estimate the rotation, translation and size of unseen instances within specific categories. In this area, dense correspondence-based methods have achieved leading performance. However, they do not explicitly consider the local and global geometric information of different instances, resulting in poor generalization ability to unseen instances with significant shape variations. To deal with this problem, we propose a novel Instance-Adaptive and GeometricAware Keypoint Learning method for category-level 6D object pose estimation (AG-Pose), which includes two key designs: (1) The first design is an Instance-Adaptive Keypoint Detection module, which can adaptively detect a set of sparse keypoints for various instances to represent their geometric structures. (2) The second design is a GeometricAware Feature Aggregation module, which can efficiently integrate the local and global geometric information into keypoint features. These two modules can work together to establish robust keypoint-level correspondences for unseen instances, thus enhancing the generalization ability of the model.Experimental results on CAMERA25 and REAL275 datasets show that the proposed AG-Pose outperforms state-of-the-art methods by a large margin without category-specific shape priors. Code will be released at https://github.com/Leeiieeo/AG-Pose.

阅读全文 »

本文介绍了如何使用RSSHub和FreshRSS来聚合并访问多个来源的内容,并在桌面端和移动端阅读。

阅读全文 »
0%